MATH4060 Tutorial 4

16 February 2023

Problem 1 (Chap 6, Ex. 11). Let $f(z)=e^{a z} e^{-e^{z}}$, where $a>0$. Observe that in the strip $\{x+i y:|y|<\pi / 2\}$ the function $f(x+i y)$ is exponentially decreasing as $|x|$ tends to infinity. Prove that

$$
\hat{f}(\xi)=\Gamma(a-2 \pi i \xi), \quad \text { for all } \xi \in \mathbb{R}
$$

For each $|y|<\pi / 2,|f(x+i y)|=e^{a x-e^{x} \cos y}$ has exponential decay as $|x| \rightarrow \infty$, since $\cos y>0$ and $a>0$. Using a substitution $t=e^{x}$, we have
$\hat{f}(\xi)=\int_{-\infty}^{\infty} f(x) e^{-2 \pi i \xi x} d x=\int_{-\infty}^{\infty} e^{a x-e^{x}-2 \pi i \xi x} d x=\int_{0}^{\infty} t^{a-2 \pi i \xi-1} e^{-t} d t=\Gamma(a-2 \pi i \xi)$.

Problem 2 (Chap 6, Ex. 13).
(a) Prove that

$$
\frac{d^{2} \log \Gamma(s)}{d s^{2}}=\sum_{n=0}^{\infty} \frac{1}{(s+n)^{2}}
$$

whenever s is a positive number. Show that if the left-hand side is interpreted as $\left(\Gamma^{\prime} / \Gamma\right)^{\prime}$, then the above formula also holds for all complex numbers $s \neq 0,-1,-2, \ldots$..
(b) Using (a), show that

$$
\Gamma(s) \Gamma(s+1 / 2)=\sqrt{\pi} 2^{1-2 s} \Gamma(2 s) .
$$

For (a), we use Hadamard factorization

$$
\frac{1}{\Gamma(s)}=e^{\gamma s} s \prod_{n=1}^{\infty}\left(1+\frac{s}{n}\right) e^{-s / n}, \quad \Gamma(s)=e^{-\gamma s} s^{-1} \prod_{n=1}^{\infty}\left(1+\frac{s}{n}\right)^{-1} e^{s / n}
$$

on $\mathbb{C} \backslash\{0,-1,-2, \ldots\}$ to compute that

$$
\begin{gathered}
\frac{\Gamma^{\prime}(s)}{\Gamma(s)}=-\gamma-\frac{1}{s}-\sum_{n=1}^{\infty}\left(\frac{1}{n+s}-\frac{1}{n}\right) \\
\left(\frac{\Gamma^{\prime}(s)}{\Gamma(s)}\right)^{\prime}=\frac{1}{s^{2}}+\sum_{n=1}^{\infty} \frac{1}{(n+s)^{2}}=\sum_{n=0}^{\infty} \frac{1}{(n+s)^{2}}
\end{gathered}
$$

To justify each step above, we make use of the following facts (proofs as in Lecture 6 or Proposition 3.2 of Chapter 5): Let $f_{n}: \Omega \rightarrow \mathbb{C}$ be a sequence of nowhere-vanishing holomorphic functions. Suppose that $\prod f_{n}$ converges uniformly on compact subsets to a nowhere-vanishing (holomorphic) function f. Then
(i) $\Pi\left(1 / f_{n}\right)$ converges to $1 / f$ uniformly on compact subsets,
(ii) $f^{\prime} / f=\sum_{n=1}^{\infty} f_{n}^{\prime} / f_{n}$, where the series converges uniformly on compact subsets.

For (b), use (a) to show that the nowhere-vanishing entire function $g(s)=\Gamma(s) \Gamma(s+$ $1 / 2) / \Gamma(2 s)$ satisfies $\left(g^{\prime} / g\right)^{\prime}=0$, so that $g(s)=e^{a s+b}$. Substitute $s=1$ and $s=1 / 2$ to find g explicitly.

Problem 3 (Chap 6, Ex. 12). Show that
(a) $1 /|\Gamma(s)|$ is not $O\left(e^{c|s|}\right)$ for any $c>0$.
(b) there is no entire function $F(s)$ with $F(s)=O\left(e^{c|s|}\right)$ that has simple zeros at $s=0,-1,-2, \ldots$ and that vanishes nowhere else.
(a) Using $s \Gamma(s)=\Gamma(s+1)$, for $k \in \mathbb{N}$,

$$
\Gamma(-k-1 / 2)=\frac{\Gamma(-(k-1)-1 / 2)}{(-k-1 / 2)}=\cdots=\frac{\sqrt{\pi}}{(-1 / 2)(-3 / 2) \cdots(-k-1 / 2)},
$$

so that

$$
\left|\frac{1}{\Gamma(-k-1 / 2)}\right|=\frac{(3 / 2)(5 / 2) \cdots(k+1 / 2)}{2 \sqrt{\pi}} \geq \frac{k!}{2 \sqrt{\pi}} .
$$

If $1 /|\Gamma(s)|=O\left(e^{c|s|}\right)$ for some $c>0$, then there exists $C>0$ with

$$
k!\leq C e^{c(k+1 / 2)}
$$

for all $k \in \mathbb{N}$. This is impossible since $\lim _{k \rightarrow \infty} k!/ e^{c(k+1 / 2)}=\infty$.
(b) Suppose for a contradiction, such F exists. Then by Hadamard theorem,

$$
F(s)=e^{a s+b} s \prod_{n=1}^{\infty}\left(1+\frac{s}{n}\right) e^{-s / n}
$$

so we can write $1 / \Gamma(s)=F(s) e^{(\gamma-a) s-b}$. But the right-hand-side is $O\left(e^{c^{\prime}|s|}\right)$ for some $c^{\prime}>0$, which is a contradiction to (a).

Problem 4 (Chap 5, Prob. 1, Blaschke condition). Prove that if f is holomorphic in the unit disc, bounded and not identically zero, and z_{1}, z_{2}, \ldots are its zeros, then

$$
\sum_{n}\left(1-\left|z_{n}\right|\right)<\infty
$$

Fact: for $0<a_{n} \leq 1, \prod_{n} a_{n}>0$ if and only if $\sum_{n}\left(1-a_{n}\right)<\infty$. To prove this, first note that the condition on a_{n} implies that the sequence of partial products is monotone decreasing (and bounded below by zero), so converges. If $\prod_{n} a_{n}>0$, then $\sum_{n} \log a_{n}<\infty$ and $a_{n} \rightarrow 1$. Since $\lim \left(\log a_{n}\right) /\left(1-a_{n}\right)=1$, limit comparison test shows that $\sum_{n}\left(1-a_{n}\right)$ converges. The converse is Proposition 3.1 (Chap 5) together with the condition that $a_{n}>0$.
Without loss of generality, we may assume $f(0) \neq 0$ (otherwise just factor out z^{m}) and the number of zeros is infinite. The above observation reduces to showing that $\prod_{n}\left|z_{n}\right|>0$. Fix $k \in \mathbb{N}$ and consider $0<r<1$ such that $\mathfrak{n}(r)>k$ and there is no zeros on C_{r}. Recall Jensen's formula:

$$
\left.\log |f(0)|-\sum_{n=1}^{\mathfrak{n}(r)} \log \left(\left|z_{n}\right| / r\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \right\rvert\, f\left(r e^{i \theta} \mid d \theta\right.
$$

Boundedness of f implies that there exists a constant $M>0$ with

$$
|f(0)| \prod_{n=1}^{k} \frac{r}{\left|z_{n}\right|} \leq|f(0)| \prod_{n=1}^{\mathfrak{n}(r)} \frac{r}{\left|z_{n}\right|} \leq M
$$

Take $r \rightarrow 1^{-}$to see that $\prod_{n=1}^{k}\left|z_{n}\right| \geq|f(0)| / M>0$ for each $k \in \mathbb{N}$, then take $k \rightarrow \infty$.

