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Problem 1 (Chap 6, Ex. 11). Let f(z) = eaze−e
z

, where a > 0. Observe that in the
strip {x+ iy : |y| < π/2} the function f(x+ iy) is exponentially decreasing as |x| tends
to infinity. Prove that

f̂(ξ) = Γ(a− 2πiξ), for all ξ ∈ R.

For each |y| < π/2, |f(x + iy)| = eax−e
x cos y has exponential decay as |x| → ∞, since

cos y > 0 and a > 0. Using a substitution t = ex, we have

f̂(ξ) =

∫ ∞
−∞

f(x)e−2πiξx dx =

∫ ∞
−∞

eax−e
x−2πiξx dx =

∫ ∞
0

ta−2πiξ−1e−t dt = Γ(a−2πiξ).

Problem 2 (Chap 6, Ex. 13).

(a) Prove that

d2 log Γ(s)

ds2
=

∞∑
n=0

1

(s+ n)2

whenever s is a positive number. Show that if the left-hand side is interpreted as
(Γ′/Γ)′, then the above formula also holds for all complex numbers s 6= 0,−1,−2, . . ..

(b) Using (a), show that

Γ(s)Γ(s+ 1/2) =
√
π21−2sΓ(2s).

For (a), we use Hadamard factorization

1

Γ(s)
= eγss

∞∏
n=1

(
1 +

s

n

)
e−s/n, Γ(s) = e−γss−1

∞∏
n=1

(
1 +

s

n

)−1
es/n

on C \ {0,−1,−2, . . .} to compute that

Γ′(s)

Γ(s)
= −γ − 1

s
−
∞∑
n=1

(
1

n+ s
− 1

n

)
,

(
Γ′(s)

Γ(s)

)′
=

1

s2
+

∞∑
n=1

1

(n+ s)2
=

∞∑
n=0

1

(n+ s)2
.

To justify each step above, we make use of the following facts (proofs as in Lecture 6
or Proposition 3.2 of Chapter 5): Let fn : Ω → C be a sequence of nowhere-vanishing
holomorphic functions. Suppose that

∏
fn converges uniformly on compact subsets to

a nowhere-vanishing (holomorphic) function f . Then

(i)
∏

(1/fn) converges to 1/f uniformly on compact subsets,

(ii) f ′/f =
∑∞
n=1 f

′
n/fn, where the series converges uniformly on compact subsets.

For (b), use (a) to show that the nowhere-vanishing entire function g(s) = Γ(s)Γ(s +
1/2)/Γ(2s) satisfies (g′/g)′ = 0, so that g(s) = eas+b. Substitute s = 1 and s = 1/2 to
find g explicitly.
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Problem 3 (Chap 6, Ex. 12). Show that

(a) 1/|Γ(s)| is not O(ec|s|) for any c > 0.

(b) there is no entire function F (s) with F (s) = O(ec|s|) that has simple zeros at
s = 0,−1,−2, . . . and that vanishes nowhere else.

(a) Using sΓ(s) = Γ(s+ 1), for k ∈ N,

Γ(−k − 1/2) =
Γ(−(k − 1)− 1/2)

(−k − 1/2)
= · · · =

√
π

(−1/2)(−3/2) · · · (−k − 1/2)
,

so that ∣∣∣∣ 1

Γ(−k − 1/2)

∣∣∣∣ =
(3/2)(5/2) · · · (k + 1/2)

2
√
π

≥ k!

2
√
π
.

If 1/|Γ(s)| = O(ec|s|) for some c > 0, then there exists C > 0 with

k! ≤ Cec(k+1/2)

for all k ∈ N. This is impossible since limk→∞ k!/ec(k+1/2) =∞.

(b) Suppose for a contradiction, such F exists. Then by Hadamard theorem,

F (s) = eas+bs

∞∏
n=1

(
1 +

s

n

)
e−s/n,

so we can write 1/Γ(s) = F (s)e(γ−a)s−b. But the right-hand-side is O(ec
′|s|) for some

c′ > 0, which is a contradiction to (a).

Problem 4 (Chap 5, Prob. 1, Blaschke condition). Prove that if f is holomorphic in
the unit disc, bounded and not identically zero, and z1, z2, . . . are its zeros, then∑

n

(1− |zn|) <∞.

Fact: for 0 < an ≤ 1,
∏
n an > 0 if and only if

∑
n(1 − an) < ∞. To prove this,

first note that the condition on an implies that the sequence of partial products is
monotone decreasing (and bounded below by zero), so converges. If

∏
n an > 0, then∑

n log an <∞ and an → 1. Since lim(log an)/(1−an) = 1, limit comparison test shows
that

∑
n(1− an) converges. The converse is Proposition 3.1 (Chap 5) together with the

condition that an > 0.

Without loss of generality, we may assume f(0) 6= 0 (otherwise just factor out zm)
and the number of zeros is infinite. The above observation reduces to showing that∏
n |zn| > 0. Fix k ∈ N and consider 0 < r < 1 such that n(r) > k and there is no zeros

on Cr. Recall Jensen’s formula:

log |f(0)| −
n(r)∑
n=1

log(|zn|/r) =
1

2π

∫ 2π

0

log |f(reiθ| dθ.

Boundedness of f implies that there exists a constant M > 0 with

|f(0)|
k∏

n=1

r

|zn|
≤ |f(0)|

n(r)∏
n=1

r

|zn|
≤M.

Take r → 1− to see that
∏k
n=1 |zn| ≥ |f(0)|/M > 0 for each k ∈ N, then take k →∞.
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